Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jun-De Xing* and Tao Zeng

College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: xing_junde@126.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.037 wR factor = 0.120 Data-to-parameter ratio = 16.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Methyl-N-(4-nitrophenyl)benzenesulfonamide

In the molecule of the title compound, $C_{13}H_{12}N_2O_4S$, the two benzene ring planes are nearly orthogonal to one another [dihedral angle = 86.1 (1)°]. The C–N–S–C torsion angle in the central part of the molecule is 65.85 (13)°. The molecular packing is stabilized by intermolecular N–H···O interactions. Received 31 October 2005 Accepted 21 November 2005 Online 26 November 2005

Comment

Derivatives of p-(O₂N)C₆H₄NHSO₂C₆H₄-p-Me have been used as starting materials for drugs, such as antagonists of the neurotensin receptors (Labeeuw *et al.*, 1996) and microbicide compositions for agriculture and horticultural use (Takanori *et al.*, 2002). In addition, it has also been used to prepare dyes (Bugaut *et al.*, 1981).

The molecular structure of the title compound, (I), is illustrated in Fig. 1 and selected bond distances and angles are given in Table 1. The benzene ring of the nitrophenyl moiety is almost perpendicular to that of the *p*-toluenesulfonamide moiety, making a dihedral angle of $86.1 (1)^{\circ}$. In the crystal structure, the molecules stack along the *b*-axis direction and adjacent molecules are linked *via* N-H···O hydrogen bonds (Table 2 and Fig. 2).

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved A view of the molecular structure of compound (I), showing the atomnumbering scheme, with displacement ellipsoids drawn at the 30% probability level.

The crystal packing of compound (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Experimental

The title compound was prepared according to the method described by Bekar et al. (1964). To a stirred solution of 13.8 g (0.1 mol) of pnitroaniline in 50 ml of pyridine, 21.0 g (0.11 mol) of p-tolylsulfonyl chloride was added. The mixture was heated on a steam-bath for 30 minutes, protected from moisture. Dilution of the hot reaction mixture with 150 ml of 50% ethanol and chilling gave 27.1 g (93%) of compound (I). Recrystallization from ethanol gave light-yellow crystals, m.p. 465-467 K.

Crystal data

$C_{13}H_{12}N_2O_4S$	$D_x = 1.469 \text{ Mg m}^{-3}$
$M_r = 292.31$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 12625
$a = 13.800 (3) \text{\AA}$	reflections
b = 8.2320 (16) Å	$\theta = 3.0-27.5^{\circ}$
c = 11.959 (2) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\beta = 103.36 (3)^{\circ}$	T = 293 (2) K
V = 1321.8 (5) Å ³	Block, light-yellow
Z = 4	$0.59 \times 0.45 \times 0.31 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID IP area-	3031 independent reflections
detector diffractometer	2669 reflections with $I > \tilde{2}I$)
oscillation scans	$R_{\rm int} = 0.031$
Absorption correction: empirical	$\theta_{\rm max} = 27.5^{\circ}$
(using intensity measurements)	$h = -17 \rightarrow 17$
(ABSCOR: Higashi, 1995)	$k = -10 \rightarrow 10$

 $k = -10 \rightarrow 10$ $l = -15 \rightarrow 15$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(t)]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	+ 0.27
$wR(F^2) = 0.120$	where P
S = 1.02	$(\Delta/\sigma)_{\rm max} =$
3031 reflections	$\Delta \rho_{\rm max} = 0.$
182 parameters	$\Delta \rho_{\min} = -$
H-atom parameters constrained	Extinction
	T

 F_0^{2}) + (0.0789P)² 86P $= (F_0^2 + 2F_c^2)/3$ 0.043 _3 .38 e Å -0.36 e Å⁻³ correction: SHELXL97 Extinction coefficient: 0.055 (4)

Table 1

Sel	ected	geometric	parameters	(A,	°)	ł
-----	-------	-----------	------------	-----	----	---

S1-O3	1.4298 (12)	N1-O1	1.2141 (18)
S1-N2	1.6360 (13)	N2-C4	1.4118 (17)
S1-C7	1.7597 (15)	C3-C4	1.3938 (19)
O4-S1-O3	120.08 (7)	C4-N2-S1	126.64 (10)
N2-S1-C7	106.06 (7)	C2-C1-N1	119.27 (12)
O1-N1-O2	122.52 (13)	C9-C10-C13	120.99 (18)
O1-N1-C1-C2	176.11 (15)	N2-S1-C7-C8	-122.62(13)
O1-N1-C1-C6	-1.6(2)	O3-S1-C7-C12	-52.36(14)
S1-N2-C4-C3	37.13 (19)	N2-S1-C7-C12	59.12 (13)

Table 2 Hydrogen-bond geometry (Å °)

Trydrogen-bone	geometry (A,).
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$

$D - \mathbf{H} \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O2^{i}$	0.86	2.30	2.9672 (18)	135

Symmetry code: (i) x, y + 1, z.

All H atoms were positioned geometrically and refined using a riding model, with C-H 0.97 Å, and $U_{iso}(H) = 1.2U_{eq}(C) [U_{iso}(H) =$ $1.5U_{eq}(C)$ for Me H atoms].

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997,); software used to prepare material for publication: SHELXTL.

The authors thank the Research Center of Pharmaceutical Crystallization Engineering (Tianjin University, State Pharmaceutical Administration of China) for the X-ray diffraction measurements.

References

- Bekar, B. R., Santi, D. V. & Shapiro, H. S. (1964). J. Pharm. Sci. 53, 1317-1325.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bugaut, B. & Andrillon, P. (1981). US Patent No. 4 277 244.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Labeeuw, B., Gully, D., Jeanjean, F., Molimard, J.-C. & Boigegrain, R. (1996). WO patent No. 9 632 382.
- Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Takanori, T., Ryo, I. & Tetsuhiro, Y. (2002). WO Patent No. 2 002 034 049.

 $T_{\min} = 0.861, \ T_{\max} = 0.924$ 12625 measured reflections