Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jun-De Xing* and Tao Zeng

College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: xing_junde@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.120$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Methyl- N -(4-nitrophenyl)benzenesulfonamide

In the molecule of the title compound, $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, the two benzene ring planes are nearly orthogonal to one another [dihedral angle $=86.1(1)^{\circ}$]. The $\mathrm{C}-\mathrm{N}-\mathrm{S}-\mathrm{C}$ torsion angle in the central part of the molecule is $65.85(13)^{\circ}$. The molecular packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Derivatives of $p-\left(\mathrm{O}_{2} \mathrm{~N}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-p$-Me have been used as starting materials for drugs, such as antagonists of the neurotensin receptors (Labeeuw et al., 1996) and microbicide compositions for agriculture and horticultural use (Takanori et al., 2002). In addition, it has also been used to prepare dyes (Bugaut et al., 1981).

(I)

The molecular structure of the title compound, (I), is illustrated in Fig. 1 and selected bond distances and angles are given in Table 1. The benzene ring of the nitrophenyl moiety is almost perpendicular to that of the p-toluenesulfonamide moiety, making a dihedral angle of $86.1(1)^{\circ}$. In the crystal structure, the molecules stack along the b-axis direction and adjacent molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 2).

Figure 1
A view of the molecular structure of compound (I), showing the atomnumbering scheme, with displacement ellipsoids drawn at the 30% probability level.

Received 31 October 2005 Accepted 21 November 2005 Online 26 November 2005

Figure 2
The crystal packing of compound (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Experimental

The title compound was prepared according to the method described by Bekar et al. (1964). To a stirred solution of $13.8 \mathrm{~g}(0.1 \mathrm{~mol})$ of p nitroaniline in 50 ml of pyridine, $21.0 \mathrm{~g}(0.11 \mathrm{~mol})$ of p-tolylsulfonyl chloride was added. The mixture was heated on a steam-bath for 30 minutes, protected from moisture. Dilution of the hot reaction mixture with 150 ml of 50% ethanol and chilling gave $27.1 \mathrm{~g}(93 \%)$ of compound (I). Recrystallization from ethanol gave light-yellow crystals, m.p. 465-467 K.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=292.31$
Monoclinic, $P 2_{1} / c$
$a=13.800$ (3) A
$b=8.2320(16) \AA$
$c=11.959$ (2) \AA
$\beta=103.36(3)^{\circ}$
$V=1321.8(5) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID IP areadetector diffractometer
oscillation scans
Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.861, T_{\text {max }}=0.924$ 12625 measured reflections
$D_{x}=1.469 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 12625 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, light-yellow
$0.59 \times 0.45 \times 0.31 \mathrm{~mm}$

3031 independent reflections
2669 reflections with $I>2 \check{2}$)
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-17 \rightarrow 17$
$k=-10 \rightarrow 10$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.120$
$S=1.02$
3031 reflections
182 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0789 P)^{2}\right. \\
\quad \quad+0.2786 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.043 \\
\Delta \rho_{\max }=0.38 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.36 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.055(4)
\end{array}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

S1-O3	$1.4298(12)$	$\mathrm{N} 1-\mathrm{O} 1$	$1.2141(18)$
S1-N2	$1.6360(13)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.418(17)$
S1-C7	$1.7597(15)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.3938(19)$
O4-S1-O3	$120.08(7)$	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{S} 1$	$126.64(10)$
N2-S1-C7	$106.06(7)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$119.27(12)$
O1-N1-O2	$122.52(13)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 13$	$120.99(18)$
O1-N1-C1-C2	$176.11(15)$	$\mathrm{N} 2-\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 8$	$-122.62(13)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-1.6(2)$	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 12$	$-52.36(14)$
S1-N2-C4-C3	$37.13(19)$	$\mathrm{N} 2-\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 12$	$59.12(13)$

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.30	$2.9672(18)$	135

Symmetry code: (i) $x, y+1, z$.

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H} 0.97 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\left[U_{\text {iso }}(\mathrm{H})=\right.$ $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for Me H atoms].

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997,); software used to prepare material for publication: SHELXTL.

The authors thank the Research Center of Pharmaceutical Crystallization Engineering (Tianjin University, State Pharmaceutical Administration of China) for the X-ray diffraction measurements.

References

Bekar, B. R., Santi, D. V. \& Shapiro, H. S. (1964). J. Pharm. Sci. 53, 13171325.

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bugaut, B. \& Andrillon, P. (1981). US Patent No. 4277244.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Labeeuw, B., Gully, D., Jeanjean, F., Molimard, J.-C. \& Boigegrain, R. (1996). WO patent No. 9632382.
Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Takanori, T., Ryo, I. \& Tetsuhiro, Y. (2002). WO Patent No. 2002034049.

